The path to open science

Jonas Schöley

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Benefits of reproducibility and open science Some personal experiences

LogrankA

Together with

Roland Rau @Demographie

CRAN Task View: Survival Analysis

Maintainer: Arthur Allignol, Aurelien Latouche

Contact: arthur.allignol at gmail.com

Version: 2022-03-07

URL: https://CRAN.R-project.org/view=Survival
Source: https://github.com/cran-task-views/Survival/

Testing

- The survdiff function in <u>survival</u> compares survival curves using the Fleming-Harrington G-rho family of test. <u>NADA</u> implements this class of tests for left-censored data.
- The maxcombo package compares survival curves using the max-combo test, which is often based on the Fleming-Harrington G-rho family of tests and is designed to have higher power than the logrank test in the scenario of non-proportional hazards such as those resulting from delayed treatment effects.
- <u>clinfun</u> implements a permutation version of the logrank test and a version of the logrank that adjusts for covariates.
- The <u>exactRankTests</u> implements the shift-algorithm by Streitberg and Roehmel for computing exact conditional p-values and quantiles, possibly for censored data.
- SurvTest in the coin package implements the logrank test reformulated as a linear rank test.
- The maxstat package performs tests using maximally selected rank statistics.
- The interval package implements logrank and Wilcoxon type tests for interval-censored data.
- Three generalised logrank tests and a score test for interval-censored data are implemented in the <u>glrt (archived)</u> package.
- survcomp compares 2 hazard ratios.
- The TSHRC implements a two stage procedure for comparing hazard functions.
- The FHtest package offers several tests based on the Fleming-Harrington class for comparing surival curves with right and interval censored data.
- The LogrankA (archived) package provides a logrank test for which aggregated data can be used as input.
- The short term and long term hazard ratio model for two samples survival data can be found in the <u>YPmodel</u> package.
- The controlTest implements a nonparametric two-sample procedure for comparing the median survival time.
- The survRM2 package performs two-sample comparison of the restricted mean survival time
- The emplik2 package permits to compare two samples with censored data using empirical likelihood ratio tests.
- The <u>KONPsurv</u> package provides powerful nonparametric K-sample tests for right-censored data. The tests are consistent against any differences between the hazard functions of the groups.

Together with

Ilya **Kashnitsky** @ikashnitsky

Figure: Colour-coded map of population structures in European Nomenclature of Territorial Units for Statistics 3 regions in 2015
Each population composition in the European Nomenclature of Territorial Units for Statistics 3 regions is unjuely evoloed. Colours show direction and magnitude of deviations from the centrepoint, which represents the average age of the European population, and is dark grey. The hue component of a colour encodes the direction of deviation: yellow indicates an elderly population (-65 years), yan in Indicates people of working age (15-64 years), and magenta indicates children (0-14 years). Chroma and lightness components signify the distance from the centre ranging from desaturated and dark colours near the centre to wind and bright colours at the comerces. We provide Re code to fully prepoduce this map.*

Together with

Ilya **Kashnitsky** @ikashnitsky

Figure: Colour-coded map of population structures in European Nomenclature of Territorial Units for Statistics 3 regions in 2015
Each population composition in the European Nomenclature of Territorial Units for Statistics 3 regions is uniquely colour coded. Colours show direction and magnitude of deviations from the
centrepoint, which represents the average age of the European population, and is dark grey. The hue component of a colour encodes the direction of deviation: yellow indicates an elderly populatio
(-65 years), cyan indicates people of working age (15-64 years), and magenta indicates children (0-14 years). Chroma and lightness components signify the distance from the centre ranging from
desatrurated and dark colours near the centre to vivid and bright colours at the conners. We provide R code to fully reproducts his map. "

Together with

Ilya **Kashnitsky** @ikashnitsky

Together with

Ilya **Kashnitsky** @ikashnitsky

earn polymator Composition in the composition of the European polymator or retrotate ones of statistics 3 regions to singuispe Good Course. Could silver unected and magnificate of new temperature of the European polymator, and is dark grey. The flux component of a color encodes the direction of deviation yellow indicates an elderly population (6-65 years), cyan indicates people of working age (15-64 years), and magental indicates children (0-14 years). Chroma and lightness components signify the distance from the centre ranging from desaturated and after colors in earth eventre to with and bright colors at the conners. We provide R code to fully reproduct his map."

Reproducible Demographers

Tim Riffe @timriffe1 & Enrique Acosta @Acosta_Kike_ & Maxi Kniffka @MaxiKniffka & Jessica Donzowa @jdonzowa

Created a fully reproducible data base of age specific COVID-19 statistics.

Reproducible Demographers

Christina **Bohk**

Bohk et al. (2018). Forecast accuracy hardly improves with methods complexity when completing cohort fertility. 10.1109/5.771073

Implemented, shared and compared 22 fertility forecasting methods

<u>github.com/fertility-forecasting/validate-forecast-methods</u>/<u>tree/master/basic-scripts-forecast-methods</u>

Reproducible Demographers

Rob **Hyndman**

Author of countless R packages widely applied

in demography.

demography: Forecasting Mortality, Fertility, Migration and Population Data

Functions for demographic analysis including lifetable calculations: Lee-Carter modelling; functional data analysis of mortality rates, fertility rates, net migration numbers: and stochastic population forecasting.

Version: 1.22

 $R (\geq 3.4)$, forecast (≥ 8.5) Depends:

Imports: ftsa (≥ 4.8), rainbow, cobs. mgcv. strucchange, RCurl Published:

Author: Rob J Hyndman with contributions from Heather Booth,

Leonie Tickle and John Maindonald.

Maintainer: Rob J Hyndman <Rob.Hyndman at monash.edu> BugReports: https://github.com/robjhyndman/demography/issues License: $GPL-2 \mid GPL-3$ [expanded from: GPL (≥ 2)] URL: https://github.com/robihyndman/demography

NeedsCompilation: no

Materials: README ChangeLog CRAN checks: demography results

github.com/robjhyndman

Karlinsky & Kobak (2022). World Mortality Database. github.com/akarlinsky/world_mortality

Karlinsky & Kobak (2022). World Mortality Database. github.com/akarlinsky/world_mortality

Proportion of deaths in 2020 registered by May 2021

Derived from Karlinsky & Kobak (2022). World Mortality Database. github.com/akarlinsky/world_mortality

Reproducibility & replicability

Given your data and your analysis I arrive at your results

Given your research question, my data and my analysis
I arrive at your results

Implementing reproducibility & replicability

Ensure everyone can run your analysis

Share and version your analysis

Share your data Archive your data Get DOIs

Demonstrating the reproducible workflow Sharing a statistical model

Demonstrating the reproducible workflow

Life expectancy changes in 2021

Roadblocks to open science My code sucks

Roadblocks to open science

I can't share my data

Roadblocks to open science

I can't share my data

Roadblocks to open science Others will copy my stuff

Roadblocks to open science My co-authors are not on-board

Reproducible analysis

github.com/jschoeley

Jonas Schöley

@jschoeley

0000-0002-3340-8518

schoeley@demogr.mpg.de

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH