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How long until infection?



UR SS22 Week 1 Schöley – Survival Analysis 3

How long until infection?
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How long until infection?

What is the expected time until infection 
given current rates?

What is the median time until infection 
given current rates?

What is the probability of me “surviving” the
whole semester without catching COVID 
given current rates?



UR SS22 Week 1 Schöley – Survival Analysis 5

Recap: Random Variables & Probability Distributions

For refreshing your understanding of random 
variables and probability distributions watch

Khan Academy (2012). Random variables. 
YouTube.

Princeton COS 302 (2020). 
Probability density and mass functions. YouTube.

https://youtu.be/3v9w79NhsfI
https://youtu.be/hDjcxi9p0ak
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Recap: Random Variables & Probability Distributions

X: Random Variable
A variable whose possible
values x are outcomes of a
random phenomenon.
The relative likelihood of
values is given by the
probability density fX(x).
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Recap: Random Variables & Probability Distributions

Random variable X: Population growth
Realized values x = +1.1%, -0.2%, +0.2%...

X: Temperature anomaly
x = +5.1, +3.7, -1.2, -0.2...
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Survival Distributions

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

Because time until event is always 
positive, we only use distributions 
over the positive real numbers.
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f(x) Density Function

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…
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f(x) Density Function

Densities come in many shapes
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f(x) Density Function

Densities come in many shapes

Here’s the distribution of the
random variable “years until death”
in Sweden.

Zanotto etal. (2021). A Mixture‑Function Mortality Model.

https://link.springer.com/content/pdf/10.1007/s10680-019-09552-x.pdf
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f(x) Density Function

f(x=10) = 0.037

f(x=20) = 0.014

Points on the density function
give us the relative likelihood of
two values. But they don’t give us
probabilities yet. For that we need
to integrate...
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f(x) Density Function

P(10<x<11) =10∫
11 f(x) dx = 0.035

P(20<x<21) =20∫
21 f(x) dx = 0.013

Integrating the density function
We get probabilities of the event 
occurring in a given time interval 
by integrating the density over said 
interval.

The probability of an event occurring 
between time 10 and 11 is 0.013.

3Blue1Brown (2017). 
The essence of calculus. YouTube.

For refreshing your understanding of 
basic calculus watch the series

https://youtu.be/WUvTyaaNkzM
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f(x) Density Function

P[0<x<Inf] = 1

It is thus certain to experience the 
event in question at some point.

The area under the probability 
density is always 1.

That’s a modeling assumption.
If the assumption does not fit our research subject,
then we need to adapt the model.
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F(x) Distribution Function

But what about the probability of 
an event occurring before time x?

Distribution Function!
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F(x) Distribution Function

The probability of an event occurring before 
time 4 is 0.33.
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F(x) Distribution Function

The probability of an event occurring before 
time 4 is 0.33.

The probability of an event occurring before 
time 15 is 0.78.
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F(x) Distribution Function
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F(x) Distribution Function
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F(x) Distribution Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x) = 0∫

x f(x) dx
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F(x) Distribution Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x) = 0∫

x f(x) dx

Schöley (2020). The dynamics of ontogenescence.

https://github.com/jschoeley/phdthesis/blob/master/doc/schoeley-2020-the_dynamics_of_ontogenescence.pdf
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S(x) Survival Function

But what about the probability of 
an event occurring after time x?

Survival Function!
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S(x) Survival Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

S(x): Survival function
The probability of not
experiencing the event until
time x.

S(x) = P(X>x) = x∫
Inf f(x) dx

= 1-F(x) = 1-0∫
x f(x) dx
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S(x) Survival Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

S(x): Survival function
The probability of not
experiencing the event until
time x.

S(x) = P(X>x) = x∫
Inf f(x) dx

= 1-F(x) = 1-0∫
x f(x) dx
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S(x) Survival Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

S(x): Survival function
The probability of not
experiencing the event until
time x.

S(x) = P(X>x) = x∫
Inf f(x) dx

= 1-F(x) = 1-0∫
x f(x) dx

Valen (1975). Life, Death, and Energy of a Tree.

https://www.jstor.org/stable/2989738
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h(x) Hazard Function

But what about the risk of an 
event occurring around time x, 
given that it did not occur 
before?

Hazard Function!
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h(x) Hazard Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.
h(x) = f(x)/S(x)
= limh 0→  P(x≤X<x+h|X≥x)/h

Schöley (2020). The dynamics of ontogenescence.

https://github.com/jschoeley/phdthesis/blob/master/doc/schoeley-2020-the_dynamics_of_ontogenescence.pdf
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h(x) Hazard Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.
h(x) = f(x)/S(x)
= limh 0→  P(x≤X<x+h|X≥x)/h

We have the rate of events
2428 infections per 100,000 persons per 7 days
2428 infections per 100,000 persons-weeks
0.02428 infections per 1 person-week

We want the survival probability
What is the probability of me “surviving” the
whole semester without catching COVID given
current rates?

Thus, we need to express S(x) in terms of h(x)
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h(x) Hazard Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.
h(x) = f(x)/S(x)
= limh 0→  P(x≤X<x+h|X≥x)/h

Thus, we need to express S(x) in terms of h(x)

Remember, F(x)=0∫
x f(x) dx.

Thus, f(x)=d/dx F(x) = F’(x).

h(x) = f(x)/S(x)
 = F’(x)/S(x)
 = [1-S(x)]’/S(x)
 = -S’(x)/S(x)
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H(x) Cumulative Hazard Function

X: Time until event
x = 0.1 weeks, 2.3 weeks...

H(x): Cumulative Hazard
The integral of h(x).

H(x) = 0∫
x h(x) dx = -log S(x)

Thus, we need to express S(x) in terms of h(x)

Remember, F(x)=0∫
x f(x) dx.

Thus, f(x)=d/dx F(x) = F’(x).

h(x) = f(x)/S(x)
 = F’(x)/S(x)
 = [1-S(x)]’/S(x)
 = -S’(x)/S(x)

0∫
xh(x) = 0∫

x -S’(x)/S(x) dx

     = -log S(x)
-0∫

xh(x) = log S(x)
exp[-0∫

xh(x)] = S(x)

Rule for logarithmic derivatives: ∫ g’(x)/g(x) dx = log |g(x)| + C
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The Exponential Distribution

exp[-0∫
xh(x)dx] = S(x)

We want the survival probability
What is the probability of me “surviving” the
whole semester without catching COVID given
current rates?

Thus, we need to express S(x) in terms of h(x)

We have the rate of events
2428 infections per 100,000 persons per 7 days
2428 infections per 100,000 persons-weeks
0.02428 infections per 1 person-week
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The Exponential Distribution

exp[-0∫
xh(x)dx] = S(x)

We want the survival probability
What is the probability of me “surviving” the
whole semester without catching COVID given
current rates?

Thus, we need to express S(x) in terms of h(x)

We have the rate of events
2428 infections per 100,000 persons per 7 days
2428 infections per 100,000 persons-weeks
0.02428 infections per 1 person-week

But what shape should h(x) have?
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The Exponential Distribution

But what shape should h(x) have?

We have the rate of events
2428 infections per 100,000 persons per 7 days
2428 infections per 100,000 persons-weeks
0.02428 infections per 1 person-week
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The Exponential Distribution

But what shape should h(x) have?

We have the rate of events
2428 infections per 100,000 persons per 7 days
2428 infections per 100,000 persons-weeks
0.02428 infections per 1 person-week

Assuming the rate stays constant over time, h(x) is a constant!
h(x) = λ = 0.02428
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The Exponential Distribution

Assuming the rate stays constant over time, h(x) is a constant!
h(x) = λ = 0.02428
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The Exponential Distribution

Assuming the rate stays constant over time, h(x) is a constant!
h(x) = λ = 0.02428

exp[-0∫
x h(x) dx] = S(x)

Applying the survival identity from earlier...

S(x) = exp(-0∫
x  λdx) = exp(-λx) 

= exp(-0.02428x)

...yields the survival function of the Exponential Distribution

Exponential distribution
If the hazard does not
change over time, the time
until event is exponentially
distributed.
h(x) = λ
S(x) = exp(-λx)
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The Exponential Distribution

Assuming the rate stays constant over time, h(x) is a constant!
h(x) = λ = 0.02428

exp[-0∫
x h(x) dx] = S(x)

Applying the survival identity from earlier...

S(x) = exp(-0∫
x  λdx) = exp(-λx) 

= exp(-0.02428x)

...yields the survival function of the Exponential Distribution

What is the probability of me “surviving” the
whole semester without catching COVID given
current rates?

Exponential distribution
If the hazard does not
change over time, the time
until event is exponentially
distributed.
h(x) = λ
S(x) = exp(-λx)
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.

h(x) = limh 0→  P(x≤X<x+h|X≥x)/h

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

h(x)=- S’(x)/S(x)
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Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.

h(x) = limh 0→  P(x≤X<x+h|X≥x)/h

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

H(x): Cumulative Hazard
The integral of h(x).

H(x) = -log S(x)

H(x) = 0∫
x h(x) dx

h(x)=- S’(x)/S(x)
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Survival Identities

Rinne (2008). The Weibull Distribution.

There are many 
more identities...

https://www.routledge.com/The-Weibull-Distribution-A-Handbook/Rinne/p/book/9781420087437
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Recap

Klein & Moeschberger (2003). Survival Analysis. Sections 2.1–2.4.

For survival distributions and identities read

3Blue1Brown (2017). The essence of calculus. YouTube.

For refreshing your understanding of basic calculus watch the series

For refreshing your understanding of random variables and 
probability distributions watch

Princeton COS 302 (2020). Probability density and mass functions. YouTube.

Khan Academy (2012). Random variables. YouTube.

https://youtu.be/WUvTyaaNkzM
https://youtu.be/hDjcxi9p0ak
https://youtu.be/3v9w79NhsfI
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Homework

Choose a time-to-event setting that interests you and look up a constant rate related 
to that setting. What is the time scale for your setting? When does the time-to-event 
start? When have have half of the population experienced the event given the 
chosen rate?

Example: Today we looked at the time until I catch COVID. I choose the rate 2,428 
infections per 100,000 persons per 7 days from the local COVID incidences and 
assumed this rate to be constant. The timescale was “weeks into the semester” and it 
starts at the first week of the semester. I used the survival function of the exponential 
distribution to calculate the time until the probability of catching COVID reached 50%.
S(x) = exp(-0∫

x  λdx) = exp(-λx)



Materials for this lecture
github.com/jschoeley/survival_analysis-ur-ss22
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@jschoeley
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0000-0002-3340-8518 

CC-BY Jonas Schöley 2022
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