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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

Zanotto etal. (2021). A Mixture‑Function Mortality Model.

https://link.springer.com/content/pdf/10.1007/s10680-019-09552-x.pdf
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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

Hammond etal. (2022). 
Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19.

https://doi.org/10.1056/nejmoa2118542
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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

Valen (1975). Life, Death, and Energy of a Tree.

https://www.jstor.org/stable/2989738
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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.

h(x) = limh 0→  P(x≤X<x+h|X≥x)/h

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

h(x)=- S’(x)/S(x)
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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.

h(x) = limh 0→  P(x≤X<x+h|X≥x)/h

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

H(x): Cumulative Hazard
The integral of h(x).

H(x) = -log S(x)

H(x) = 0∫
x h(x) dx

h(x)=- S’(x)/S(x)

S(x) = exp(-H(x))

Klüver (2022). The survival of interest groups.

https://doi.org/10.1080/01402382.2019.1662634
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Last Week’s Homework

Choose a time-to-event setting that interests you and look up a constant rate related 
to that setting. What is the time scale for your setting? When does the time-to-event 
start? When have have half of the population experienced the event given the 
chosen rate?

Example: Today we looked at the time until I catch COVID. I choose the rate 2,428 
infections per 100,000 persons per 7 days from the local COVID incidences and 
assumed this rate to be constant. The timescale was “weeks into the semester” and it 
starts at the first week of the semester. I used the survival function of the exponential 
distribution to calculate the time until the probability of catching COVID reached 50%.
S(x) = exp(-0∫

x  λdx) = exp(-λx)
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What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…



UR SS22 Week 2 Schöley – Survival Analysis 11

What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Who?  8 breast cancer patients



UR SS22 Week 2 Schöley – Survival Analysis 12

What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis



UR SS22 Week 2 Schöley – Survival Analysis 13

What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis
Event of interest? Death



UR SS22 Week 2 Schöley – Survival Analysis 14

What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis
Event of interest? Death
Time unit? Months



UR SS22 Week 2 Schöley – Survival Analysis 15

What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis
Event of interest? Death
Time unit? Months
End of observation? 10 years follow up
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What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Time x
Time x0

Start of observation time

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis
Event of interest? Death
Time unit? Months
End of observation? 10 years follow up

Time xω

End of observation time
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What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Time x
Time x0

Start of observation time

x
22
23
38

73
42

i
1
2
3
4
5

Observation index Observed event time

xi=1=22
xi=2=23

xi=3=38

77
89
115

6
7
8

xi=4=42
xi=5=73

xi=6=77 xi=7=89 xi=8=115

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis
Event of interest? Death
Time unit? Months
End of observation? 10 years follow up

Time xω

End of observation time
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Inferring the Survival Density from Data

C
B

A

Which distribution most likely corresponds to the data?
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Inferring the Survival Density from Data

C
B

A

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

You need:
 → data x
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

You need:
 → data x
 → a probability density fθ (“the 

model”) parameterized by…

fθ(x)= λ exp(-λx)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

You need:
 → data x
 → a probability density fθ (“the 

model”) parameterized by…
 → ...a set of parameters θ

fθ=λ(x)= λ exp(-λx)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

0.005

0.010

0.015

0.020
f(x)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.01(x)

0.005

0.010

0.015

0.020
f(x)

Density
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.01(x) log fλ=0.01(x)

log L(λ=0.01|x) = ∑i log fλ=0.01(xi) = ?0.005

0.010

0.015

0.020
f(x)

Density

log density /
log Likelihood
contribution
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.01(x)
0.0080
0.0079
0.0068

0.0048
0.0066

0.0046
0.0041
0.0032

log fλ=0.01(x)

-4.84
-4.99
-5.03

-5.50

-4.83

-5.34
-5.38

-5.76
log L(λ=0.01|x) = ∑i log fλ=0.01(xi) = -41.670.005

0.010

0.015

0.020
f(x)

Density

log density /
log Likelihood
contribution
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.02(x) log fλ=0.02(x)

log L(λ=0.02|x) = ∑i log fλ=0.01(xi) = ?0.005

0.010

0.015

0.020
f(x)

Density

log density /
log Likelihood
contribution
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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 → Maximum Likelihood Estimation



UR SS22 Week 2 Schöley – Survival Analysis 32

Inferring the Survival Density from Data
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Which distribution most likely corresponds to the data?
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Inferring the Survival Density from Data
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
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Inferring the Survival Density from Data
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index Observed event time

77
89
115

6
7
8

fλ=0.05(x)
0.0166
0.0158
0.0075

0.0013
0.0061

0.0011
0.0006
0.0002

log fλ=0.05(x)

-4.145
-4.895
-5.095

-7.744

-4.095

-6.645
-6.845

-8.745
log L(λ=0.05|x) = ∑i log fλ=0.05(xi) = -47.915
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Censoring

But what if some people did not experience the event during the observation time?

Next week  Censored observations→



Materials for this lecture
github.com/jschoeley/survival_analysis-ur-ss22

Jonas Schöley

@jschoeley

j.schoeley@uni-rostock.de
0000-0002-3340-8518 

CC-BY Jonas Schöley 2022
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