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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 weeks, 2.3 weeks…

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

S(x): Survival function

The probability of not
experiencing the event until
time x.
S(x) = P(X>x)

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.

h(x) = limh 0→  P(x≤X<x+h|X≥x)/h

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.

F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until
time x.
F(x) = P(X≤x)

F(x)=0∫
x f(x) dx S(x)=x∫

Inf f(x) dx

S(x)=1-F(x)

We express our  knowledge about the distribution of X in 
any of these functions. Knowing any single function we 
can derive all other via the Survival Identities.

H(x): Cumulative Hazard
The integral of h(x).

H(x) = -log S(x)

H(x) = 0∫
x h(x) dx

h(x)=- S’(x)/S(x)

S(x) = exp(-H(x))
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What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”
x = 0.1 month, 2.3 months…

Time x
Time x0

Start of observation time

x
22
23
38

73
42

i
1
2
3
4
5

Observation index Observed event time

xi=1=22
xi=2=23

xi=3=38

77
89
115

6
7
8

xi=4=42
xi=5=73

xi=6=77 xi=7=89 xi=8=115

Who?  8 breast cancer patients
Start of observation? Cancer diagnosis
Event of interest? Death
Time unit? Months
End of observation? 10 years follow up

Time xω

End of observation time



UR SS22 Week 3 Schöley – Survival Analysis 4

Inferring the Survival Density from Data

C
B

A

Which distribution most likely corresponds to the data?
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Inferring the Survival Density from Data

C
B

A

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

You need:
 → data x
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

You need:
 → data x
 → a probability density fθ (“the 

model”) parameterized by…

fθ(x)= λ exp(-λx)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

You need:
 → data x
 → a probability density fθ (“the 

model”) parameterized by…
 → ...a set of parameters θ

fθ=λ(x)= λ exp(-λx)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

0.005

0.010

0.015

0.020
f(x)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.01(x)

0.005

0.010

0.015

0.020
f(x)

Density
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.01(x) log fλ=0.01(x)

log L(λ=0.01|x) = ∑i log fλ=0.01(xi) = ?0.005

0.010

0.015

0.020
f(x)

Density

log density /
log Likelihood
contribution
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.01(x)
0.0080
0.0079
0.0068

0.0048
0.0066

0.0046
0.0041
0.0032

log fλ=0.01(x)

-4.84
-4.99
-5.03

-5.50

-4.83

-5.34
-5.38

-5.76
log L(λ=0.01|x) = ∑i log fλ=0.01(xi) = -41.670.005

0.010

0.015

0.020
f(x)

Density

log density /
log Likelihood
contribution
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

fλ=0.02(x) log fλ=0.02(x)

log L(λ=0.02|x) = ∑i log fλ=0.01(xi) = ?0.005

0.010

0.015

0.020
f(x)

Density

log density /
log Likelihood
contribution



UR SS22 Week 3 Schöley – Survival Analysis 15

Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model fθ to the data x by choosing model parameters θ
which maximize the likelihood function L, i.e. which make the
observed data most probable.

L(θ|x) = ∏i
 fθ(xi)

In practice we often maximize the log-likelihood for convenience:
log L(θ|x) = log ∏i

 fθ(xi) = ∑i log fθ(xi)

Single observed survival time

Probability density given parameters θ
Product over all observations

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index Observed event time

77
89
115

6
7
8

fλ=0.05(x)
0.0166
0.0158
0.0075

0.0013
0.0061

0.0011
0.0006
0.0002

log fλ=0.05(x)

-4.145
-4.895
-5.095

-7.744

-4.095

-6.645
-6.845

-8.745
log L(λ=0.05|x) = ∑i log fλ=0.05(xi) = -47.915
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Censoring

But what if some people did not experience the event during the observation time?

 → Censored observations
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

0.005

0.010

0.015

0.020

f(x)
1
1
1

1
1

1
1
1

9 >120 0

δ
Event indicator

For censored observations the survival time is
not exactly known.

 → a right censored event did not happen until time x
 → a left censoring event did happen before time x
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
 → Maximum Likelihood Estimation

Time x
Time x0

Start of observation time

xi=1=22
xi=2=23

xi=3=38
xi=4=42

xi=5=73
xi=6=77 xi=7=89 xi=8=115

Time xω

End of observation time

fθ=λ(x)= λ exp(-λx)

x
22
23
38

73
42

i
1
2
3
4
5

Observation index
Observed event time

77
89
115

6
7
8

0.005

0.010

0.015

0.020

f(x)
1
1
1

1
1

1
1
1

9 >120 0

δ
Event indicator

For censored observations the survival time is
not exactly known.

 → a right censored event did not happen until time x
 → a left censoring event did happen before time x

Incomplete observations affect the likelihood
L(θ|x) = ∏i

 fθ
δ(xi)Sθ

1-δ(xi) = ∏i
 λθ

δ(xi)Sθ(xi)
log L(θ|x) = ∑i

 δ log λθ(xi) + log Sθ(xi)



Materials for this lecture
github.com/jschoeley/survival_analysis-ur-ss22
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