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Recap: Survival Identities

In survival analysis we
consider the random variable
“X: Time until event”

x = 0.7 weeks, 2.3 weeks...
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Recap: Survival Identities

In Su-rVIvaI analysis we ) We express our knowledge about the distribution of X in
Cons!der the.random variable  any of these functions. Knowing any single function we
X: Time until event can derive all other via the Survival Identities.

x = 0.7 weeks, 2.3 weeks...

Sweden 1935 Sweden 2011
f(x): Density function 8. o tabl doatns 3,
c o 0 e — mixture mode e
The relative likelihood of . e
experiencing the event = * mode
around time x. 53
n o
3

Fig.2 Model fit on life table deaths for Sweden in 1935 and 2011. The solid line shows the overall mix-
ture model. The dotted line highlights the fit of the Skew Normal employed to estimate accidental and
premature mortality. The big dots point out the three modal ages of the distribution

Zanotto etal. (2021). A Mixture-Function Mortality Model.
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https://link.springer.com/content/pdf/10.1007/s10680-019-09552-x.pdf

Recap: Survival Identities

In survival analysis we

We express our knowledge about the distribution of X'in

consider the random variable  any of these functions. Knowing any single function we

“X: Time until event”
x = 0.7 weeks, 2.3 weeks...

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x)=of* f(x) dx ,
F(x): Distribution function
aka Cumulative function
The probability of
experiencing the event until

time x.
F(x) = P(X=x)

UR SS22 Week 2

can derive all other via the Survival Identities.

B Covid-19-Related Hospitalization or Death from Any Cause through Day 28 among Patients Treated <5 Days after Symptom Onset
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No. at Risk
NMV-r 1039 1004 1002 1000 997 995 993 993 993 993 992
Placebo 1046 963 959 959 955 953 951 948 948 948 945

Hammond etal. (2022).

Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19.
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https://doi.org/10.1056/nejmoa2118542

Recap: Survival Identities

In Su-rV|va| analysis we ) We express our knowledge about the distribution of X in
Cons!der the.random variable any of these functions. Knowing any single function we
X: Time until event can derive all other via the Survival Identities. '
SEED
x = 0.7 weeks, 2.3 weeks... o]
seeonN®

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

SURVIVAL (4,)

F(x)=,* f(x) dx g S)=J"F00 dx

F(x): Distribution function S(x): Survival function |
o . AGE (YEARS

aka Cumulative function

HH > The I’Obabl|lt Of nOt i i uter, 5 ver
The probability of S=1F() | Ll PrOvAdIY 0T ROt BIGURE 1, Samtroitio s fo Bt lobor, o
eXper|enC|ng -the even-t Untll teXpeI‘IenCIng e event untl gr(;yfizérisngar:n c;)nr:gf;fl};héggegimiig:ra(zfy. each other, thus
time x. ITNERXS
F(x) = P(X=x) S(x) = P(X>x) Valen (1975). Life, Death, and Energy of a Tree.
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https://www.jstor.org/stable/2989738

Recap: Survival Identities

In su.rvwal analysis we ) We express our knowledge about the distribution of X in
consider the random variable  any of these functions. Knowing any single function we
“X: Time until event” can derive all other via the Survival Identities.

x = 0.7 weeks, 2.3 weeks...

h(x): Hazard function
The instantaneous rate
of new events at time x
among those who did not
experience the event yet.

h(x) = lim,_, P(xsX<x+h|Xzx)/h

f(x): Density function
The relative likelihood of
experiencing the event
around time x.

F(x)=f f0) e 4 SRR A hb= ST0/Sk)

F(x): Distribution function S(x): Survival function

aka Cumulative function — > bability of not

The probqblllty of ~S(X)=1-F(x) € probabil 3(10 no i
experiencing the event until experiencing the event unti
time x. time X.

F(x) = P(X=x) S(x) = P(X>x)
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Recap: Survival Identities

In Survival analysis we ) We express our knowledge about the distribution of X'in
consider thecrandam variahle £l Lot v ; imalafinction we
“X: Time un| Kliiver (2022). The survival of interest groups. - }s.
x=0.1Tweed °°] |
h(x): Hazard function
[ The instantaneous rate
- of new events at time x
5 hay among those who did not
5 experience the event yet.
02 h(x) = lim,_, P(xsX<x+h|Xzx)/h
F(x)=,/
0- |
F(x): Distributiq 0 50 100 150 200 H0O = o h(x) dx

Age (in years) = -log S(X) V

—— Sectional groups — — Cause groups

aka Cumulative

The probability oure 3. The effect of

. . . t t t type.

experiencing tho—eaereamem— - oe: 9roup ype -
-~ time x.

F(x) = P(X=x) S(x) = P(X>x) S(x) = exp(-H(x))

H(x): Cumulative Hazard
The integral of h(x).
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https://doi.org/10.1080/01402382.2019.1662634

Last Week's Homework

Choose a time-to-event setting that interests you and look up a constant rate related
to that setting. What is the time scale for your setting? When does the time-to-event
start? When have have half of the population experienced the event given the
chosen rate?

Example: Today we looked at the time until | catch COVID. | choose the rate 2,428
infections per 100,000 persons per 7 days from the local COVID incidences and
assumed this rate to be constant. The timescale was “weeks into the semester” and it
starts at the first week of the semester. | used the survival function of the exponential
distribution to calculate the time until the probability of catching COVID reached 50%.
S(x) = exp(-,J* Adx) = exp(-Ax)
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What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”

x = 0.1 month, 2.3 months...
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What Does Survival Data Look Like?

In survival analysis we
consider the random variable
“X: Time until event”

x = 0.1 month, 2.3 months...

Who? 8 breast cancer patients

Start of observation? Cancer diagnosis
Event of interest? Death

Time unit? Months

End of observation? 10 years follow up

| | .

Time x | |

Time x, Time x,,

Start of observation time End of observation time
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What Does Survival Data Look Like?

In survival analysis we

: ) Observation index
consider the random variable

Observed event time

i ) '¢
“X: Time until event” 1 22
x = 0.1 month, 2.3 months... 2 23
Who? 8 breast cancer patients 2 4313
Start of observation? Cancer diagnosis 5 73
Event of interest? Death 6 77
Time unit? Months 7 89
End of observation? 10 years follow up 8 115
X_.=22  x_,=38 X =13
| X_,=23  x_,=42 X =77 x_,=89 Xi=8=115|
O . O O [
Time x | |
Time x, Time x,,

Start of observation time

UR SS22 Week 2
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Inferring the Survival Density from Data

\
e
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Which distribution most likely corresponds to the data?
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Inferring the Survival Density from Data
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Which distribution most likely corresponds to the data?
- Maximum Likelihood Estimation
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

Maximum Likelihood Estimation
We fit a model f, to the data x by choosing model parameters @

which maximize the likelihood function L, i.e. which make the

observed data most probable.
Product over all observations

| = Probability density given parameters 0

|
L(9|X) = n,-fe(XJ) __Single observed survival time

In practice we often maximize the log-likelihood for convenience:
log L(8Ix) = log I.f,(x) = 3. log f,(x)
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

Maximum Likelihood Estimation You nheed:
We fit a model f, to the data x by choosing model parameters @ = data x
which maximize the likelihood function L, i.e. which make the
observed data most probable.
Product over all observations
| Probability density given parameters 8
|
L(9|X) = I_l,-f(;()&l//Single observed survival time
In practice we often maximize the log-likelihood for convenience:
log L(8Ix) = log I.f,(x) = 3. log f,(x)
X =22  x_=38 X =13
| x_,=23  x_=42 X =17 x_=89 xi=8=115|
. @ e oo ® @ >
Time x | |
Time x| Time x,,
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

Maximum Likelihood Estimation You need:
We fit a model f, to the data x by choosing model parameters @ - data x

which maximize the likelihood function L, i.e. which make the >3 probability density fe ("the

observed data most probable.
model”) parameterized by...

Product over all observations

| = Probability density given parameters 0

|
L(9|X) = n,-fe(XJ) __Single observed survival time

In practice we often maximize the log-likelihood for convenience:
log L(8Ix) = log I.f,(x) = 3. log f,(x)

X =22 X =38 X =73 = -
| I)_(1i=2=23 ;;:42 B Xi=6=77 Xi=7=89 Xi=s=1 1 5| fe(X) A exp( AX)
@ e = > > .
Time x | |
Time x| Time x,,
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

Maximum Likelihood Estimation You need:
We fit a model f, to the data x by choosing model parameters @

— data x
which maximize the likelihood function L, i.e. which make the - . “
observed data most probable. — a probability density fe( the

Product ove“r all observations mode|") parameterized by
— ...a set of parameters 6

I Probability density given parameters 0

|
L(9|X) = n,-fe(XJ) __Single observed survival time

In practice we often maximize the log-likelihood for convenience:
log L(8Ix) = log I.f,(x) = 3. log f,(x)

Xx_=22  x_,=38 X =73 — )
| I)_(1i=2=23 ;i3=4=42 : Xi=6=77 Xi=7=89 Xizg:1 1 5| fe:A(X) )\ exp( AX)
@ e = > ® -
Time x | |
Time X, Time X,
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

Observed event time

f(x) Observation index i X
0.020 ] 29
2 23
3 38
0.015 1 49
5 73
0.010 g gg
8 115
0.005
X =22  x_=38 X =13
X723 X =42 % ETT 5,89 x 1Y f_,(x)= A exp(-Ax)
: ie . S — s =
Time x |
Time x, Time x,,

Start of observation time
Schéley - Survival Analysis
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?

— Maximum Likelihood Estimation

f Olgserved event time Densit
(x) Observation index j X f (x
0.020

22 A=0.01
23

38

42

73

77

89

115

0.015

0.010

ooNoOUh~WN =

0.005

X =22  x_=38 X =13

X723 X =42 % ETT 5,89 x 1Y f_,(x)= A exp(-Ax)
o

@ e @ @ | >

Time x
Time X, Time X,
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data? log density /
— Maximum Likelihood Estimation log Likelihood
f(X) o Olgserved event time Densit contribution
0000 Observation index 11 )2(2 f}\zo‘01 x) log fA=0.01(X)
2 23
3 38
0.015 4 42
5 73
0.010 g gg
8 115
0.005 |Og L(A=001 |X) = leog fA=0.0'I (Xl) = ?
X =22  x_=38 X =13
X723 X =42 x_ =77 x_=89 xi=8=115| fe:;\(x): A exp(-Ax)
: s A e > > >
Time x |
Time X, Time X,
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data? log density /
— Maximum Likelihood Estimation log Likelihood
Observed event time Densr[ contribution
f(x) Observation index | X o X) Iog f 001( X)
0.020 1 22 880
2 23 0.0079 —4.84
3 38 0.0068 -4.99
0.015 4 42 0.0066 -5.03
5 73 0.0048 -5.34
0.010 6 /7 0.0046 -5.38
' 7 89 0.0041 -5.50
8 115 0.0032 -5.76
0.005 log L(A=0.01|x) = 5, log f,_, ,(x) = -41.67
X =22  x_=38 X =13
X723 X =42 X.=77 x.89  x_ -115| f_,(x)= A exp(-Ax)
< s o—o O >
Time x |
Time x, Time x|
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data? log density /
— Maximum Likelihood Estimation log Likelihood
f(X) o Olgserved event time Densit contribution
0000 Observation index 11 )2(2 f}\zo‘02 x) log fA=0.02(X)
2 23
3 38
0.015 4 42
5 73
0.010 g gg
0.005 log L(A=0.021x) =5,l0g f,., 1, (x) = ?
X =22  x_=38 X =13
X723 X =42 x_ =77 x_=89 xi=8=115| fe:;\(x): A exp(-Ax)
: (C A =0 > ® >
Time x |
Time X, Time X,
Start of observation time End of observation time
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
Y
= 410
(@]
~ =
> 0.0101 N
Wial Il
A
= -41.5-
|
0.005 5 o
o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
h - -
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
|
0.005 5 o
o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
|
0.005 5 o
o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
0.005 = o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation
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= 1 °
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—_ 2 ®
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A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
0.005 = o
0.000 A @ 00 00 o} 2420 -
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
0.005 = o
0.000 A @ 00 00 o} 2420 -
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
|
0.005 — D o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
|
0.005 — D o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?
— Maximum Likelihood Estimation

0.020 - -40.51
~_
0.015- 5;
= 1 °
= 410
—_ 2 ®
> 0.0101 N
A
= -41.5-
|
0.005 — D o
0.000 A @ 00 00 o} 2420 -
0 25 50 75 0.0100 0.0125 0.0150 0.0175 0.0200
X A
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Inferring the Survival Density from Data

Which distribution most likely corresponds to the data?

— Maximum Likelihood Estimation

Observation index

Observed event time

Maximum Likelihood Estimation i X A0 10 (x) logf b %05
We fit a model f, to the data x by choosing model parameters @ 1 22 00766 -4.0
which maximize the likelihood function L, i.e. which make the 2 23 0.0158 -4.145
observed data most probable. 3 38 0.0075  -4.895
Product over all observations 4 42 0.0061 -5.095
\‘ - _ Probability density given parameters 8 5 73 0.0013 -6.645
L(9|X) I‘_l,fe( ) _Single observed survival time 6 77 0.0011 :6'845
7 89 0.0006 7.744
In practice we often maximize the log-likelihood for convenience: 3 115 00002 -8.745
IOg L(elx) |Og I_l f (X) Z |Og f (X) _ _ _ |Og L(A=005|X) - Z'OQ fA 005( ) - _47 915
X =22  x_=38 X =13
| X_,=23  x_=42 X =717 x_,=89  x_ -115| f (X)= A exp(-)\x)
. @ o0 o—o @ >
Time x | |
Time x| Time x,,

Start of observation time End of observation time
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Censoring

But what if some people did not experience the event during the observation time?

Next week = Censored observations
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Materials for this lecture
github.com/jschoeley/survival_analysis-ur-ss22

Jonas Scholey

YW @jschoeley
@ 0000-0002-3340-8518
j.schoeley@uni-rostock.de CC-BY Jonas Scholey 2022
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