A convolution formulation of mortality displacement

Jonas Schöley

Everything in mortality is a tempo effect

Jonas Schöley

schoeley@demogr.mpg.de

MAX PLANCK INSTITUTE
FOR DEMOGRAPHIC RESEARCH

But they may only have lived for another month anyway...

But they may only have lived for another month anyway...

But they may only have lived for another month anyway...

Observed deaths are expected deaths displaced in time

aka

In mortality there are only tempo effects

Observed deaths are expected deaths displaced in time

Pure displacement

Pure displacement + No lifesaving

Pure displacement + No lifesaving + Life lost only during excess

Pure displacement + No lifesaving + Life lost only during excess

$$y_i = \sum_{j \text{ in } 1:6} x_j a_{ij}$$

$$y_i = \sum_{j \text{ in } 1:6} x_j a_{ij}$$

$$y_i = \sum_{j \text{ in } 1:6} x_j a_{ij}$$

 $y_t = \sum_{z \text{ in } -1:4} x_{t+z} a_{t,t+z}$

Daily deaths in French urban agglomerations June 1998 – December 2003

0.100

0.010

Time dependent distribution of displacement lengths (days of life lost) Right censoring and 0 displacement not shown.

Time dependent distribution of displacement lengths (days of life lost) Right censoring and 0 displacement not shown.

Convolution in survival analysis

Convolution in survival analysis

$$f_Y(y) = \int_0^{\omega} f_X(x = y+z) f_Z(z) dz$$

$$Y = X - Z$$

Actual age at death = Age at death under expected scenario – Lifetime lost

Convolution in survival analysis

Independent displacement

$$f_Y(y) = \int_0^\omega f_X(x = y+z) f_Z(z) dz$$

$$Y = X - Z$$

Actual age at death = Age at death under expected scenario – Lifetime lost

Age dependent displacement
$$f_Y(y) = \int_0^{\omega} \int_0^{\omega} f_X(x = y+z) f_{Z/X}(z|x) dz dx$$

Jonas Schöley jschoeley.com

schoeley@demogr.mpg.de

MAX PLANCK INSTITUTE
FOR DEMOGRAPHIC RESEARCH